Correct Answer : C
2013 % 2 = 1, 2013 / 2 = 1006
1006 % 2 = 0, 1006 / 2 = 503
503 % 2 = 1, 503 / 2 = 251
251 % 2 = 1, 251 / 2 = 125
125 % 2 = 1, 125 / 2 = 62
62 % 2 = 0, 62 / 2 = 31
31 % 2 = 1, 31 / 2 = 15
15 % 2 = 1, 15 / 2 = 7
7 % 2 = 1, 7 / 2 = 3
3 % 2 = 1, 3 / 2 = 1
1 % 2 = 1, 1 / 2 = 0
Now write in order all the remainders from bottom to top. This gives 11111011101
which is the binary equivalent of 2013
.
Similarly for octal
2013 % 8 = 5, 2013 / 8 = 251
251 % 8 = 3, 251 / 8 = 31
31 % 8 = 7, 31 / 8 = 3
3 % 8 = 3, 3 / 8 = 0
So octal equivalent will be 3735
.
2013 % 16 = 13 = D, 2013 / 16 = 125
125 % 16 = 13 = D, 125 / 16 = 7
7 % 16 = 7, 7 / 16 = 0
So hexadecimal equivalent will be 7DD
.